EE-527: MicroFabrication

Flammability of Compounds

R. B. Darling / EE-527

Flammability Range

- Upper Explosive Limit (UEL)
- Lower Explosive Limit (LEL)
 - volume percent of substance in air that will sustain combustion
- Flammable Range: UEL LEL, in percent
 - Example: xylene
 - UEL = 7.0% above this concentration, mixture is too rich to burn
 - LEL = 1.1% below this concentration, mixture is too lean to burn

Flammability Points

- <u>Flash Point</u>: minimum temperature where a spark or flame will cause an instantaneous flash in the vapor space above a liquid
- <u>Fire Point</u>: minimum temperature of a liquid to support continuous combustion after ignition via a spark or flame
- <u>Autoignition Point</u>: minimum temperature at which a liquid spontaneously ignites without the introduction of a spark or flame
 - Example: xylene
 - autoignition point (AP) = 496 C
 - boiling point (BP) = 138 C
 - fire point = 44 C [usually about 20 C higher than FP]
 - flash point (FP) = 25 C

R. B. Darling / EE-527

Fire Tetrahedron

BLEVE: boiling liquid expanding vapor explosion ---gas cylinders with liquefied contents

R. B. Darling / EE-527

Fire Classifications

- Class A common combustibles that leave coals or embers
- Class B flammable liquids and gases
- Class C fires in energized electrical equipment
- Class D combustible metals: Al, Mg, Li, Na, K, Ti, Zr

Fire Extinguishants

- Water Class A fires only
- Carbon Dioxide Class A or B fires only
 - 2-25 lb. 830 psi cylinders of liquefied CO₂
 - soda-acid extinguishers (sodium bicarbonate)
 - spray: $2NaHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O + 2CO_2$
 - foam: $6NaHCO_3 + Al_2(SO_4)_3 \rightarrow 3Na_2SO_4 + 2Al(OH)_3 + 6CO_2$
- Carbon Tetrachloride Class A-B-C
 - no longer used; can produce phosgene gas; CCl_4 is carcinogenic
 - $CCl_4 + H_2O \rightarrow COCl_2 + 2HCl$
- Halogenated Hydrocarbons Class A-B-C
- Dry Chemical Extinguishers Class A-B-C

Halogen Fire Extinguishants

- Halogenated Hydrocarbons (Halogens)
 - Halon numbering system:
 - 1st digit: no. of carbon atoms
 - 2nd digit: no. of fluorine atoms
 - 3rd digit: no. of chlorine atoms
 - 4th digit: no. of bromine atoms
 - 5th digit: no. of iodine atoms
 - Examples:
 - Halon $104 = CCl_4$, carbon tetrachloride
 - Halon $1011 = CH_2ClBr$, bromochloromethane
 - Halon $1301 = CF_3Br$, bromotrifluoromethane
 - Halon $1211 = CF_2ClBr$, bromochlorodifluoromethane

Halogen Fire Extinguishants

- Halons 1301 and 1211 are most commonly used
 - gases at room temperature
 - heavier than air
 - produce Br atoms which scavenge free radicals
 - toxicity is controversial, but short term exposure appears safe
- Halons are "clean" extinguishants
 - do not leave any solid or liquid by-products
 - only alternative for vaults, museums, libraries, aircraft, and sensitive electronics
- Halons are greenhouse gases- displace atmospheric ozone
 - many halons are no longer manufactured; existing supply is all there is...

Dry Chemical Fire Extinguishants

- Granular sodium chloride: NaCl, melts at 801 C
- Graphite: C, usually used for class D fires
- Sodium bicarbonate: NaHCO₃
- Potassium bicarbonate: KHCO₃, "purple K"
- ABC: ammonium dihydrogen phosphate, $NH_4H_2PO_4$
 - $2NH_4H_2PO_4 \rightarrow P_2O_5 + 2NH_3 + H_2O$
 - endothermic reaction absorbs heat
 - NH₃ scavenges OH radicals
 - most commonly used in household fire extinguishers
 - H_3PO_4 is produced which is is corrosive to metals

Principles of Fire Extinguishants

- Fuel must pyrolize into free radicals before combustion will occur:
 - H_2 and O_2 do not react until a spark is introduced to ignite them
 - HCl as a gas will not combust until exposed to sunlight
 - CH₄ will not combust until ignited
- Halon extinguishants are broken into free radicals with combine with and eliminate the free radicals of the fuel.
- CO₂ fire extinguishants are most effective in laboratory situations when used properly
- Fire sprinklers are not intended to extinguish fires!!!
 - Their purpose is lay down a fog and suppress the smoke so that people can escape from a burning room